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Abstract. We reformulate various versions of infinitely divisible cascades proposed in the literature using
stochastic equations. This approach sheds a new light on the differences and common points of several
formulations that have been recently provided by several teams. In particular, we focus on the simplification
occurring when the infinitely divisible noise at the heart of such model is stable: an independently scattered
random measure becomes a stable stochastic integral. In the last section we discuss the D-dimensional
generalization.

PACS. 02.50.Ey Stochastic processes – 47.27.E- Turbulence simulation and modeling – 5.45.Df Fractals

1 Introduction

Multifractals have been introduced more than two decades
ago in the fields of turbulence, geophysics and chaos the-
ory. Since then, the multifractal framework has been used
widely in many fields including turbulence [1,2], precip-
itations [3,4], oceanography [5,6], biology [7–9], chem-
istry [10] astrophysics [11], finance [12–14], etc.

The main properties of multifractal models or data
are their high variability on a wide range of spatial or
temporal scales, associated to scaling intermittent fluctu-
ations and long-range power-law correlations. Scale invari-
ance is usually associated to a power-law spectrum (e.g.
the k−5/3 Kolmogorov law in fully developed turbulence)
which is the signature of the absence of a characteristic
scale. At large scales, scale invariance may be connected
to long range dependence due to power law correlations.
At small scales, scale invariance is rather interpreted as
a singular behaviour (e.g., non differentiable) of the form
|f(x) − f(xo)| ∼ |x − xo|h connected to a high variability
at small scales. It appears that these intepretations of the
scale invariance property can be linked to the statistics
of the multiscale fluctuations of some physical data (e.g.,
the velocity increments or the dissipation field in a tur-
bulent flow). Indeed, there exists a parallel between the
description of the scale invariant behaviour of a field by
a set of multiscaling exponents and the description of the
statistics of its fluctuations at various scales [15–17].
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For a long time, research in this framework was mainly
devoted to data analysis and to the estimation of some pa-
rameters, but no continuous model was proposed to repro-
duce the captured properties in the general case, and there
were only discrete scale constructions like Mandelbrot bi-
nomial cascades [18] or cascades on wavelet trees [19].
Only recently, research has developed on the definitions
and properties of versatile multifractal stochastic pro-
cesses. In this framework, various recent works [16,20–24]
have presented similar objects in different ways, involving
multifractal stochastic processes depending on a continu-
ous scale parameter. These objects belong to the family
of infinitely divisible cascades, a large class of multifractal
scalar fields. We propose to review these presentations of
infinitely divisible cascades which rely on the use of rather
abstract mathematical objects such as additive stochastic
measures. Then we show how a specific family of stochas-
tic processes, namely stable processes (including Gaussian
processes), connects to a related family of processes that
is much more easier to describe. In this approach, we will
use descriptions based on the framework of multiplicative
cascades as well as the framework of stochastic integrals
as proposed for the Gaussian case in 1 dimension in [22].

First, we consider cascades in 1 dimension only. We
recall the main definitions and properties of infinitely di-
visible (ID) cascades. We also recall the definition using
a stochastic integral proposed in [22] in the special Nor-
mal case. We extend the result of [22] describing explicitly
how the ID framework is related to a simpler framework
for Lévy stable random variables in 1 dimension. Then we
show that most of our arguments are easier to understand
in 1 dimension but generalize rather naturally to D ≥ 2
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dimensions. Moreover, a nice formulation based on the use
of a stochastic integral with respect to some α-stable noise
is given. Finally, we propose to consider separately D spa-
tial dimensions and 1 time dimension within a unique D+1
dimensional cascade so that causal animated scalar fields
can be considered. Again a formulation using a stochastic
integral with respect to some α-stable noise is proposed
that makes explicit the main properties of the resulting
field: multifractality both in time and space, homogene-
ity, stationarity and causality.

2 From cascades to stochastic integrals:
the 1D causal case

Examples of realizations of 1D, 2D and 3D infinitely divis-
ible cascades are shown in Figure 1. Let us first recall the
definition of a scale invariant infinitely divisible cascade.

2.1 Definitions

Let G(X) be an infinitely divisible distribution with mo-
ment generating function G̃(q) that can be written in the
following form G̃(q) = IE(eqX) = e−ρ(q).

In full generality, let dm(t, r) = g(r)dtdr a positive
measure on the time-scale half-plane P+ := R × R

+. We
will see below that scale invariance imposes the special
choice dm(t, r) = 1

r2 dtdr. Let M denote an infinitely divis-
ible (ID), additive independently scattered random mea-
sure (called an “ID random measure” in the following)
distributed by G, and supported on the time-scale half-
plane P+ and associated to its so-called control measure
dm(t, r). For any subset E of P+, the random measure M
is such that

IE[exp [qM(E)]] = exp [−ρ(q)m(E)] . (1)

For all disjoints subsets E1 and E2, M(E1) and
M(E2) are independent random variables and
M(E1 ∪ E2) = M(E1) + M(E2). For more informa-
tion on random measures, see [25–27], and for a first use
for cascades see [20].

Definition 1
For a given resolution 0 < � ≤ 1, let C�(t) the cone of
influence defined below for every t ∈ R. An Infinitely Di-
visible Cascading measure density (IDC measure density)
is a family of processes Q�(t) parametrized by � of the form

Q�(t) =
exp [M(C�(t))]

IE[expM(C�(t))]
. (2)

Possible choices for distribution G are the Normal distri-
bution, Poisson distribution, compound Poisson distribu-
tions, Gamma laws, Lévy-stable laws, and infinitely many
others, so that a large variety of choices is available for
modelling and applications (see [28]).

Different definitions of the cone C�(t) have been re-
cently proposed in the literature. To get causal definitions,

we adapt the expressions given in [21,23,24], and consider
only integration on positions (t′, r′) for which t′ ≤ t. The
corresponding choices are1:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CBM
� (t) = {(t′, r′) : � ≤ r′ ≤ 1, t− r′ ≤ t′ ≤ t}

∪{(t′, r′) : t − 1 ≤ t′ ≤ t, r′ ≥ 1}
in [21,23], see Figure 2a;

CCRA
� (t) = {(t′, r′) : � ≤ r′ ≤ 1, t− r′ ≤ t′ ≤ t}

in [24], see Figure 2b.

(3)

In this contribution, we will focus on stable laws. Indeed,
it appears that for stable cascades the ID stochastic
measure M may be simplified, and expressed using a
stochastic integral versus a stable noise. Such a formu-
lation was proposed by Schmitt and Marsan [20] and
its properties in the Gaussian case studied in Schmitt [22]:

Definition 2

ελ(t) = λ−σ2/2 exp
(

σ

∫ t

t+1−λ

(t + 1 − u)−1/2 dB(u)
)

(4)
where λ plays the role of the inverse of a resolution as
1/� in definition 1, dB(u) is a Gaussian noise and σ2 is a
variance parameter. We will use the notation Q̃�(t) = ελ(t)
in the sequel.

Our first aim is to gather the various definitions above
within consistent notations and to precisely formulate the
link between approaches using respectively “multiplica-
tive cascades” like (2) and “stochastic integrals” like (4).
To bring all approaches within the same context, we will
mainly use causal definitions.

2.2 Scaling properties

The scaling properties of IDCs in 1 dimension have been
studied in references [20–24,29,30]. We recall here some
basic results. The measure M , the distribution G, the con-
trol measure m and the geometry of the cone of influence
C�(x) control the scaling structure as well as marginal dis-
tributions of the cascade. One major property of IDCs is
the following [20,21,24]:

IE[Qq
� ] = exp [−ϕ(q)m(C�)] (5)

where
ϕ(q) = ρ(q) − qρ(1), ϕ(1) = 0, (6)

for all q for which ρ(q) = − log G̃(q) is defined.
We may also remark that, turning to local averages κr

over a box of size r ≥ �

κr(t) =
1
r

∫

|t′−t|<r/2

Q�(t′) dt′, (7)

1 Note that the large scale in the definition of C�(t) has been
arbitrarily set to 1 without loss of generality. Choosing a dif-
ferent large scale L would simply reduce to a change of units
t → t · L, � → r · L.
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1D 2D 3D

Fig. 1. Examples of realizations of infinitely divisible cascades in 1, 2 and 3 dimensions respectively.
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Fig. 2. Cone C�(t) chosen by (a) Bacry & Muzy [21]; (b) Chainais, Riedi & Abry [24]; (c) Schmitt and Marsan in [20] once the
correspondence is established (see text).

one gets:
IEκr(t)q ∝ exp [τ(q)m(Cr(t))] (8)

where in general τ(q) = ϕ(q), at least within some lim-
ited range of values of q [29,31]. This corresponds to ob-
servables and is therefore denoted “dressed cascades” as
opposed to “bare cascades” represented by Q� [3,18]. We
do not consider this question further here, and mainly fo-
cus on the formalism describing the construction of bare
cascades.

2.3 The Normal case

In this section, the distribution G of definition 1 is the
Normal law N (µ, σ2) with average value µ and variance
σ2. It was shown in [21,23] that an exact power law scaling
is observed if (see Fig. 2a):
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

dm(t, r) =
dt dr

r2
,

C�(t) = CBM
� (t)

= {(t′, r′) : � ≤ r′ ≤ 1, t − r′ ≤ t′ ≤ t}
∪{(t′, r′) : t − 1 ≤ t′ ≤ t, r′ ≥ 1}.

(9)

Then, the key quantity is the control measure of the cone
of influence C�:

m(CBM
� (t)) =

∫ 1

�

∫ t

t−r

dt′

︸ ︷︷ ︸
=r

dr′

r2
+
∫ ∞

1

∫ t

t−1

dt′

︸ ︷︷ ︸
=1

dr′

r2

= log(1/�) + 1. (10)

The essential term that ensures a multifractal behaviour
is the log(1/�) term; the last“+1” term only ensures exact
power law scaling behaviours for scales ranging from � to
1. In [24], only the 1st term was used. Indeed, as � → 0, the
differences due to the choice of the cone of Figure 2a or 2b
asymptotically disappear, except around t � 1. The con-
tribution of the upper part {(t′, r′) : t − 1 ≤ t′ ≤ t, r′ ≥ 1}
is minor indeed.

In [21,23] as in [16,24], the presentations of infinitely
divisible cascades are based on multiplicative cascades and
their generalizations, as in definition 1. In [22], another
viewpoint is proposed that evokes random walks through
the use of a stochastic integral as in definition 2. To clarify
the link between these apparently different approaches, let
us note that the integrals in (10) were written integrating
first w.r. to t and then w.r. to r. Inverting this order and
computing the same integrals, we obtain (see Fig. 3):

m(C�(t)) =
∫ t−�

t−1

∫ ∞

t−t′

dr

r2

︸ ︷︷ ︸
(t−t′)−1

dt′ +
∫ t

t−�

∫ ∞

�

dr

r2

︸ ︷︷ ︸
1/�

dt′

=
∫ t−�

t−1

(t − t′)−1 dt′ + 1. (11)

This writing can be used to suggest a rewriting of equa-
tion (2) using stochastic integrals. Equation (11) implicitly
gives a decomposition of the stochastic measure M(C�(t))
as a sum of successive elementary terms in time (see
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(a) (b)

Fig. 3. (a) Integrating first w.r. to t, and then w.r. to r: the process is described as a multiplicative cascade; (b) Integrating
first w.r. to r, then w.r. to t: the process is described as the exponential of a stochastic integral.

Fig. 3) which corresponds to a sum of independent identi-
cally distributed normal variables associated to the verti-
cal slices in Figure 3b. This is due to the fact that M is an
independent and additive random measure. This way, the
use of a 2D random measure is replaced by a 1D stochastic
integration.

In the Normal case, one has ρ(q) = −µq−σ2 q2

2 in (1).
Thus, from (11), the random variable associated to an el-
ementary slice E of width dt′ around t′ has mean ∝ µm(E)
and variance ∝ σ2m(E) where m(E) = dt′/(t − t′) if
� ≤ t − t′ ≤ 1 and m(E) = 1/� if t − t′ ≤ �. As a conse-
quence, for some given instant t we get the following new
expression for M(C�(t)), written as a stochastic integral
(see also Appendix A):

M(C�(t)) � µ · m(C�(t)) + σ

∫ t−�

t−1

(t − t′)−1/2 dB(t′)

+ σ

∫ t

t−�

�−1/2 dB(t′), (12)

where � means “equality in distributions” and m(C�) is
given by (10) when C� = CBM

� . Equivalently, this can be
written in the form

M(C�(t)) � µ · m(C�(t)) + σ

∫ t

t−1

K�(t − t′) dB(t′), (13)

with

K�(τ) =
{

τ−1/2, � ≤ τ ≤ 1,

�−1/2, 0 ≤ τ ≤ �,
(14)

when C� = CBM
� as in (9). Thus, for any instant t, the

random variable Q�(t) associated to an infinitely divisible
cascade as defined by (2) can be described thanks to some

Brownian motion dB(t′) by

Q�(t) � eµm(C�)

e(µ+σ2/2)m(C�)
exp

[

σ

∫ t

t−1

K�(t − t′) dB(t′)
]

� e−
σ2
2 m(C�) exp

[

σ

∫ t

t−1

K�(t − t′) dB(t′)
]

(15)

where e−
σ2
2 m(C�) is a normalization factor.

On the way back to the formulation (4) proposed by
Schmitt and Marsan in [20], let � = 1/λ. The change of
variable t′ = t − 1

t+1−u in (4) yields:

Q̃�(t) = ελ(t) = �σ2/2 exp

(

σ

∫ t−�

t−1

(t − t′)−1/2 dB(t′)

)

,

(16)
where one recognizes exactly the exponential of the first
terms of (12) with

CSM
� (t) = {(t′, r′) : t − 1 ≤ t′ ≤ t − �, r′ ≥ t − t′}. (17)

Then, m(CSM
� ) = log(1/�) and the normalization factor

e−σ2m(C�)/2 in (15) becomes �σ2/2 in (16). The cone CSM
� is

illustrated in Figure 2c. The difference between this cone
and the cone of Figure 2a is a thin strip{(t′, r′): t − � ≤
t′ ≤ t, r′ ≥ �} that becomes infinitely thin and negligible
as � → 0. We have indeed shown that this formulation is
closely related to (2).

Last, note that choosing the cone proposed by Chainais
et al. in [24] — see Figure 2b – yields

M(CCRA
� (t)) � µ·log(1/�)+σ

∫ t−�

t−1

(
1

t − t′
− 1
)1/2

dB(t′)

+ σ

∫ t

t−�

(
1
�
− 1
)1/2

dB(t′). (18)



F.G. Schmitt and P. Chainais: On causal stochastic equations for log-stable multiplicative cascades 153

Again, the difference between (12) and (18) is sensitive
for � � 1 only, and asymptotically disappears as � → 0.

It is important to note that the equalities in distri-
bution in equations (12) to (15) are valid for one given
instant t only. Indeed, (15) could not be written simulta-
neously with the same Brownian motion for two distinct
instants t1 	= t2. Therefore, Q̃�(t) = ελ(t) in (16) and
Q�(t) in (15) are not identical processes. One can sim-
ply say that, for a given instant t, the random variables
Q�(t) and Q̃�(t) are equal in distribution. Something has
been “lost” from Q�(t) to Q̃�(t): the independence of the
(time, scale) stochastic measure M in scale is no more
present in the definition of ελ where only the integration
over time remains. Given a Brownian motion dB(t′), the
correlations of the process Q̃�(t) are controlled by the ker-
nel K�(τ). However, it was shown in [22] that the essential
multifractal properties have been preserved. In particular,
one recovers the characteristic property of multiplicative
cascades cov(log Q̃�(0), log Q̃�(τ)) ∼ σ2 log(1/τ). This im-
portant remark remains valid for all the generalizations
considered below.

2.4 The stable non-Gaussian case

Previous results generalize easily to the stable case, i.e.,
for the choice G = S(α, σ, µ, β) [26], provided the law G is
asymmetrical with β = −1, this condition being imposed
by the fact that we need some moments of the exponential
of the stable stochastic process to exist (see Schertzer and
Lovejoy [3,2] and Kida [32]). Then, the function ρ(q) in (1)
takes the form ρ(q) = −µq−σαqα with 0 < α < 2 (α 	= 1).

The same framework as before gives equation (13) with
a Lévy stable measure dLα with parameter 0 ≤ α ≤ 2.
From (11), the random variable associated to an ele-
mentary slice E of width dt′ around t′ has now mean
∝ µm(E) and scale parameter ∝ σαm(E) where again
m(E) = dt′/(t − t′) if � ≤ t − t′ ≤ 1 and m(E) = 1/�
if t− t′ ≤ �. Therefore, this provides the following expres-
sion:

M(C�(t)) � µ ·m(C�(t)) + σ

∫ t

t−1

K�(t − t′) dLα(t′), (19)

where the kernel is here:

K�(τ) =
{

τ−1/α, � ≤ τ ≤ 1,

�−1/α, 0 ≤ τ ≤ �.
(20)

The choice α = 2 gives again the Gaussian case.

3 The 2-dimensional case

A generalization of infinitely divisible cascades to D di-
mensions was proposed in [16]. Examples of realizations
in 2D and 3D generated using the algorithms proposed in
this reference are shown in Figure 1. For pedagogical rea-
sons, we first consider the 2D case in this section before

ρ = � ρ = 1

A�(x) B�(x)

Fig. 4. Cone C�(x = (x, y)) for D = 2 decomposed in two
parts A�(x) and B�(x).

going to D-dimensional generalization in the next section.
For D = 2 dimensions we have for X ∈ R

2

dm(X, r) = C(2)
dr

r3
dX (21)

where C(2) is a constant that will be estimated below,
and X = (x, y) is a point in the 2D (x, y) space. The first
subsection below deals with the 2D spatial case and the
second subsection deals with the causal case where the y
dimension is replaced by time t ≡ y.

3.1 The two-dimensional spatial case

In the 2D spatial case, the quantity M(C�) results from an
integral over a conical volume defined by:

C�(X) = {(X′, r′) : � ≤ ‖X′ − X‖ ≤ 1, r′ ≥ ‖X′ − X‖}
∪{(X′, r′) : ‖X′ − X‖ ≤ �, r′ ≥ �}. (22)

as described in Figure 4. Here the cone belongs to a 3
dimensional space: 2 dimensions for the vector X = (x, y)
and 1 dimension for the scale r. We must also underline
that the norm ‖.‖ in the above equation concerns the 2-
dimensional projection of a point having a 3D position
(X, r).

The key quantity to compute is m(C�(X)).

m(C�(X)) =
∫∫

�≤‖X′−X‖≤1

(∫ ∞

‖X′−X‖

C(2)dr

r3

)

dX′

+
∫∫

‖X′−X‖≤�

(∫ ∞

�

C(2)dr

r3

)

dX′ (23)

where we have again integrated w.r. to r first as in (11). We
then note that the integration over the conic volume can
be decomposed into a sum of thin cylindrical tubes. We
will therefore use below cylindrical coordinates with ρ =
‖X′−X‖. Let SD the surface of the D dimensional unitary
sphere (e.g. 2π in 2 dimensions, 4π in 3 dimensions...).
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This yields in 2 dimensions:

m(C�(X)) =
∫ 1

�

(∫ ∞

ρ

C(2)dr

r3

)

S2ρdρ (24)

+
∫ �

0

(∫ ∞

�

C(2)dr

r3

)

S2ρdρ

=
C(2)S2

2

(

log
(

1
�

)

+
1
2

)

= log
(

1
�

)

+
1
2

if
C(2)S2

2
= 1, (25)

which does not depend on X. This last condition pre-
scribes the choice C(2) = 1/π. Then, self-similarity is en-
sured in the same conditions as in dimension 1, due to the
choice of the control measure in (21).

By computing the integrals w.r. to r in (23), we get
from arguments similar to those used in 1 dimension (see
also Appendix B) the following expression for any given
position X:

M(C�(X)) � µ · m(C�)

+ σ

∫∫

‖X′−X‖≤1

K
(2)
� (‖X′ − X‖) dLα(X′), (26)

where the new kernel is:

K
(2)
� (ρ) =

{
S
−1/α
2 ρ−2/α, for � ≤ ρ ≤ 1,

S
−1/α
2 �−2/α, for 0 ≤ ρ ≤ �,

(27)

for 0 < α ≤ 2. For α < 2, dLα is, as before, an α-stable
random measure with asymmetric parameter β = −1. Sec-
tion 4 presents the general version of this result in D di-
mensions.

3.2 The 2D space-time causal case: X = (x, t)

It was also proposed in [16] to use multi-dimensional in-
finitely divisible cascades to generate time evolving pro-
cesses. Here we consider the 2D space-time causal case.
The y dimension is now considered as a time variable and
denoted t ≡ y so that X = (x, t). Our purpose is to show
that the previous construction can be used to build some
time evolving scalar field. The resulting field can be seen
as a 1D spatial multifractal field obeying some multifrac-
tal time evolution. Causality is guaranteed by perform-
ing a stochastic integration over a cylinder analogous to
the one in previous section but with the further condition
t′ ≤ t (or y′ ≤ y), see Figure 5. The previous approach
applies with only some changes due to the introduction
of causality. For instance, the normalizing constant C(2)
becomes 2/π in place of 1/π. The previous modifications
of the stochastic integration for stable random measures
still apply, and we obtain here the following expression for
any given position X:

M(C�(X)) � µ · m(C�) + σ

∫∫

F
K

(2)
� (‖X′ − X‖) dLα(X′),

(28)

Fig. 5. Spatial domain of integration corresponding to a stable
random measure for a 2D stable process on a space (x, t).

where X = (x, t) and F = {X′ = (x′, t′) : ‖X′ − X‖ ≤
1; t′ ≤ t}: see Figure 5. The 2D causal kernel is still given
by equation (27). Section 4 presents the general version of
this result in D dimensions.

Then, the origin of temporal, respectively spatial, cor-
relations in the resulting process Q̃�(x, t) can simply be
explained geometrically. The correlations are governed by
the measure of the intersection of half-hyperspheres in the
(x, t) domain. Figure 6a illustrates the origin of shared
information between successive values of the process at
some given position, Q̃�(x, t1) and Q̃�(x, t2). Figure 6b
shows the origin of spatial correlations between Q̃�(x1, t)
and Q̃�(x2, t) at some given instant t. Figure 6c shows the
most general situation for different time instants t1 	= t2
and space positions x1 	= x2.

Such a time dependent positive valued process Q̃�(x, t)
exhibits a multifractal behaviour both in time and space.
Moreover, it can be considered as more realistic than the
approach proposed in [33–35]. Indeed, in these works, tem-
poral correlations at large time intervals are controlled by
the same quantities that control spatial correlations over
small distances. This is inherent to their construction. We
emphasize that there is not such a paradox in the present
definition: temporal correlations over large time intervals
are not dominated by spatial correlations over small dis-
tances.

4 The D-dimensional case with D ≥ 2

4.1 The spatial case

As shown in [16], the definitions naturally extends from 1
to D > 1 dimensions by using

dm(X, r) = C(D)
dr

rD+1
dX (29)

where C(D) is a constant linked to the surface of a hyper-
sphere of dimension D, and chosen to ensure the adequate
scaling law.

The definition of C�(X), the conical volume in
D-dimension is still given by equation (22), where the cone



F.G. Schmitt and P. Chainais: On causal stochastic equations for log-stable multiplicative cascades 155

(a) (b) (c)

Fig. 6. Illustration of the origin of (a) temporal, respectively (b) spatial, correlations in the resulting process Q̃�(x, t). The
correlations can be described in terms of the measure of the intersection of half-hyperspheres in the (x, t) domain.

belongs to a dimension D+1: D dimensions for the vector
X and 1 dimension for the scale r. As before, the norm
‖.‖ concerns the D-dimensional projection of a point of
position (X, r).

Computations similar to those of (23) and (25) per-
formed in D dimensions yield:

m(C�(X)) =
∫ 1

�

(∫ ∞

ρ

C(D)dr

rD+1

)

SDρD−1dρ

+
∫ �

0

(∫ ∞

�

C(D)dr

rD+1

)

SDρD−1dρ (30)

so that C(D) = D/SD = DΓ (D/2)/(2πD/2) since SD =
2πD/2/Γ (D/2) where Γ is the gamma function. This
choice finally yields

m(C�(X)) = log
(

1
�

)

+
1
D

. (31)

which does not depend on X. Therefore, the previous ap-
proach for D = 2 for an α-stable stochastic measure gen-
eralizes to D dimensions providing an expression with a
polar isotropic kernel:

M(C�(X)) � µ · m(C�)

+ σ

∫∫

‖X′−X‖≤1

K
(D)
� (‖X′ − X‖) dLα(X′), (32)

where the new kernel is for 0 < α ≤ 2:

K
(D)
� (a) =

{
S
−1/α
D ρ−D/α, for � ≤ ρ ≤ 1,

S
−1/α
D �−D/α, for 0 ≤ ρ ≤ �.

(33)

For D = 1 and D = 2, we recover the kernel described
respectively by (20) and (27). As a result, we get a new
description of a D-dimensional process Q̃� that is very
similar to Q� (see discussion in Sect. 2.3) as defined
by (2) by using a stochastic integral over the unitary
disc {X′: ‖X′ − X‖ ≤ 1} (in D dimension). Interestingly,
this can be compared to the heuristic derivation of the D-
dimensional stable case presented in [3,2]. These authors
also introduced a power-law integration kernel over some

volume, but the exponent was not the same: K(ρ) ≈ ρ−γ

with γ = 1 − D + D/α.
An important remark concerns the simulation of log-

stable multiplicative cascades. They are usually rather
painful to simulate because they do not belong to the
family of compound Poisson cascades, see [24]. The re-
sults presented here and equation (32) in particular give
us a much more simple way to simulate not exactly identi-
cal but very similar processes. One must first simulate the
independent random measure dLα(X), which remains to
simulate a set of i.i.d. stable variables over some regular
discrete sampling of the X space. Then, one simply uses
equation (32) to get M(C�(X)). Taking the exponential
yields Q̃�(X).

Once again, it is important to note that equation (32)
holds for one given position X′ only to which dLα(X′) is
indeed associated. Therefore, we emphasize that the pro-
cess Q̃�(X) obtained by taking the exponential of (32) is
not identical to Q�(X) as defined by (2). However, as al-
ready mentioned in Section 2.3, the essential multifractal
properties are preserved.

4.2 The causal spatio-temporal case

We come back to the use of D-dimensional infinitely divis-
ible cascades to build time evolving processes as already
evoked in Section 3.2 and introduced in [16]. Some “multi-
fractal films” can be synthesized this way 2. In this spirit,
the same approach as above for 2-dimensional causal cas-
cades can be easily generalized to D dimensions by using
X = (x, t). Again, we will use half of a cone C� as defined
above: the half for which t′ ≤ t. The resulting field can be
seen as a D−1-dimensional multifractal field, with a time
evolution. The previous simplifications of the random in-
tegration for stable random measures still apply, and we
obtain the following final expression:

M(C�(X)) � µ ·m(C�) + σ

∫∫

F
K

(D)
� (‖X′ −X‖) dLα(X′),

(34)

2 See http://www.isima.fr/∼chainais/PUB/software.html;
an example of a multifractal film, obtained by simulating a
2+1 dimensional field and considering 2 spatial dimensions
and 1 time dimension.
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where X = (x, t) and F = {X′ = (x′, t′) : ‖(x′, t′) −
(x, t)‖ ≤ 1; t′ ≤ t}. The D-dim causal kernel is still given
by equation (33).

The comments in Figure 6 are still relevant in this gen-
eral context. As a consequence, this construction inherits
some nice geometrical understanding. Such a description
makes explicit:

– the stationarity of the process at fixed position xo;
– a causal time evolution;
– a description in terms of a stochastic integral with re-

spect to a stable noise dLα;
– a correspondence between this description where time

and space variables are explicitely distinguished and
the global description expM(C�(x, t)) where x ∈ R

d

and t ∈ R are indeed merged.

Such a construction can be compared to the fractionally
integrated fields described in [3] and later extended to
causal (D+1) space-time multifractal processes in [36].
In the latter, a Fourier approach was proposed to im-
pose the fundamental property cov(log ελ(0), log ελ(x)) ∼
σ2 log(1/‖x‖) thanks to k−1 filtering in the Fourier do-
main. The resulting processes are causal, but, due to the
use of a Fourier transform, they could not be synthesized
in a causal manner. Moreover, such a Fourier approach is
memory demanding. The definitions in terms of stochas-
tic integrals proposed here overcome such drawbacks and
provide an explicit description directly in the space-time
domain.

Moreover, note that definition (34) could be formu-
lated in the framework of Generalized Scale Invariance [37,
38] as well. This framework permits to introduce some con-
troled anisotropy by replacing the classical self-similarity
property in D + 1 dimensions by a matrix operator self-
similarity. For instance, this can be achieved by using (see
Eq. (44) in [36])

‖(x, t)‖ = (|x|del−D/α + |t| del−D/α

1−H )
1

del−D/α

where H characterizes the anisotropy (H = 0 in the isotro-
pic case) and del = D + 1 − H . This could be helpful
to understand better how large-scale anisotropy in tur-
bulent flows have influence at small scales. Indeed, in
Kolmogorov’s homogeneous turbulence framework, it is
often assumed that the cascade process “washes” the de-
tails of the large-scale flow, so that after few cascade steps,
small scales become locally isotropic. In fact experimental
results indicate that this may not be true, and the present
approach may provide a theoretical framework to develop
continuous anisotropic and scaling models.

5 Conclusion and discussion

In this paper, we have first given a consistent presenta-
tion of various definitions and presentations of stable cas-
cades, a special family of infinitely divisible cascades, in
1 dimension. To this aim, we have used both the multi-
plicative cascade viewpoint as in [16,20,21,23,24] and the

stochastic integral viewpoint as in [22]. We have made ex-
plicit the differences between definitions mainly in terms
of the chosen cone C� when using the multiplicative cas-
cade approach or in terms of the chosen integration do-
main when using the stochastic integral approach. In the
latter, the integration kernel has been identified. We have
also clarified the similarities and differences between the
definitions based respectively on multiplicative cascades
and on stochastic integrals.

We have also considered a D dimensional generaliza-
tion, showing that the simplification arising in the 1D
case for stable random measures can also be introduced
in D-dimension, using cylindrical coordinates. We have
provided explicit expressions, using an integration over a
D-dimensional space, with a kernel whose general expres-
sion was provided. We have first given the 2D case before
generalizing straightforwardly to D ≥ 2. In each case we
have also considered the spatio-temporal situation where
X = (x, t), which is built using the same kernel as for
the purely spatial situation; only the integration domain
is different, to ensure causality.

A general formulation in terms of a stochastic integral
with respect to a Lévy noise allowed us to make clear the
fundamental properties of such fields: multifractality both
in time and space, homogeneity, stationarity and causal-
ity. The extension to the framework of generalized scale
invariance as in [36] is considered. Such a time depen-
dent positive valued process Q̃�(x, t) exhibits a multifrac-
tal behaviour both in time and space. Moreover, it can be
considered as more realistic than the approach proposed
in [33–35], since in these works, the same quantities control
both spatial correlations over small distances and tempo-
ral correlations over large time intervals. We emphasize
that this is not the case in our definition and that the
correlation function receives a quite intuitive geometrical
interpretation (see Fig. 6).

Finally, an important remark concerns the simulation
of log-stable multiplicative cascades. They are usually ra-
ther painful to simulate because they do not belong to the
family of compound Poisson cascades and cannot be ob-
tained from a simple marked point Poisson process. The
present results provide a much more simple way to the
simulation of very similar α-stable processes. The frame-
work presented here corresponds to D-dimensional scalar
multifractal processes. This is yet useful for practical ap-
plications. However this cannot be directly used for the
simulation of real flows, since turbulence is fully tensorial.
For real flow situations, one would need to generalize this
continuous scalar framework to continuous multifractal
tensorial processes. The corresponding theoretical frame-
work is still to be developed. If turbulent cascade models
could be adapted to vectorial or tensorial frameworks, it
could lead to much more reliable predictive models for in-
dustrial flows, than the eddy-viscosity models, which are
usually only able to correctly predict moments of order 1
and 2.

The author gratefully acknowledge Nicolas Perpete for stimu-
lating discussions and comments.
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Fig. A.1. Vertical plate denoted T (r0, a, b) in the text, in the
(t, r) space.

Appendix A: Stability property for random
measures on thin strips: the 1D case

This appendix is aimed at giving a hint to the computa-
tions used to link the stable stochastic measure of some
set to some sotchastic integral with respect to some stable
noise in dimension 1.

We consider here a simple case, illustrated by Fig-
ure A.1. We denote this set for b > a, T (r0, a, b) = {(t′, r′):
a ≤ t′ ≤ b; r0 ≤ r′}. We have m(T (r0, a, b)) = (b − a)/r0.
And we consider here a Gaussian process with ρ(q) =
− 1

2q2, so that:

IE[exp [qM(T (r0, a, b))]] = exp
[
q2(b − a)/2r0

]
. (35)

Let us note here ω a Gaussian random measure of variance
σ2 and integrated on an interval (a, b):

ω = W (σ, a, b) = σ

∫ b

a

dB(t). (36)

We then have:

IE[exp [qω]] = exp

[
q2

2

∫ b

a

σ2dt

]

= exp
[
q2(b − a)σ2/2

]
.

(37)
Comparing equations (35) and (37), we see that the stable
random variable M (T (r0, a, b)), which is a random mea-
sure on a 2D space, is then equal in distribution to a 1D
process, following the stability property. This gives the
following relation for a Gaussian random measure:

M (T (r0, a, b)) � W (r−1/2
0 , a, b) (38)

where � means “equality in distribution”. Applying this
relation to the thin plate T (r0, t, t+dt) gives the following:

M (T (r0, t, t + dt)) � r
−1/2
0 dB(t). (39)

For the stable case of basic index 0 ≤ α ≤ 2, we get:

M (T (r0, t, t + dt)) � r
−1/α
0 dLα(t). (40)

Fig. A.2. Void cylinder denoted V C(r0,X0, a, b) in the text,
in the (x, y, r) space.

Appendix B: Stability property for random
measures on a cylindrical corona: the 2D case

We consider here the case of a void cylinder, illus-
trated by Figure A.2. We denote this set for b > a,
V C(r0,X0, a, b) = {(X′, r′): a ≤ ‖X′ − X0‖ ≤ b; r0 ≤ r′}.
On one hand, the measure of this set is given by:

m (V C(r0,X0, a, b)) = C(2)π(b2 − a2)
∫ ∞

r0

dr

r3

= π
b2 − a2

2r2
0

C(2). (41)

where C(2) is the normalizing constant in 2 dimensions.
We consider here a Gaussian process M(V C(r0,X0,

a, b)) depending on X0 and such that

log IE[exp [qM(V C(r0,X0, a, b))]] = q2π
b2 − a2

4r2
0

C(2).

(42)
On the other hand, let us note here ω a Gaussian ran-
dom measure of variance σ2C(2) and integrated over a
cylindrical corona of inner radius a and outer radius b,
centered at point X0: ω = σC(2)1/2

∫

A
dB(x, y), with

A(X0, a, b) = {X′: a ≤ ‖X′ − X0‖ ≤ b}. We have:

log IE[exp [qω]] = σ2q2π
b2 − a2

2
C(2). (43)

Comparing equations (42) and (43), we see that the ran-
dom variable M (V C(r0,X0, a, b)), which is a random
measure on a 3D volume, is then equal in distribution
to a random measure on a 2D surface, with variance
σ2 = C(2)/2r2

0. This gives the following relation:

M (V C(r0,X0, a, b)) � (C(2)/2r2
0)

1/2
M (A(X0, a, b)) .

(44)
For the stable case of basic index 0 ≤ α ≤ 2, we have:

M (V C(r0,X0, a, b)) � (C(2)/2r2
0)

1/α
M (A(X0, a, b)) .

(45)
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Appendix C: Stability property for random
measures on hypercylindrical coronas:
the D-dimensional case

The previous approach for dimension 2 can be generalized
for D dimension. In this case, the only difference is the
introduction of the term r−D−1 instead of r−3 in the in-
tegral of equation (41). We still consider a void cylinder
V C(r0,X0, a, b) = {(X′, r′): a ≤ ‖X′ − X0‖ ≤ b; r0 ≤ r′}
and provide here directly the stable case of index α:

M (V C(r0,X0, a, b)) �
(
C(D)/DrD

0

)1/α
M (A(X0, a, b)) .

(46)

References

1. U. Frisch, Turbulence; the legacy of A.N. Kolmogorov
(Cambridge University Press, Cambridge, 1995), p. 296

2. D. Schertzer et al., Fractals 5, 427 (1997)
3. D. Schertzer, S. Lovejoy, J. Geophys. Res. 92, 9693 (1987)
4. P. Hubert, Hydrol. Sci. J. 46, 897 (2001)
5. L. Seuront et al., J. Plankton Res. 21, 877 (1999)
6. S. Lovejoy et al., J. Plankton Res. 23, 117 (2001)
7. F.G. Schmitt, L. Seuront, Physica A 301, 375 (2001)
8. Y. Ashkenazy et al., Physica A 316, 662 (2002)
9. E. Wesfreid et al., Appl. Comput. Harmon. Anal. 18, 329

(2005)
10. I.J. Benczik, Z. Neufeld, T. Tel, Phys. Rev. E 71, 016208

(2005)
11. E. Marsch, C.-Y. Tu, H. Rosenbauer, Ann. Geophysicae

14, 259 (1996)
12. F.G. Schmitt, D. Schertzer, S. Lovejoy, Appl. Stoch.

Models Data Anal. 15, 29 (1999)
13. J.-F. Muzy, D. Sornette, J. Delour, A. Arneodo, Quant.

Finance 1, 131 (2001)
14. L. Calvet, A. Fisher, J. Econometrics 105, 27 (2001)
15. B. Castaing, B. Dubrulle, J. Phys. II France 5, 895 (1995)
16. P. Chainais, Eur. Phys. J. B 51, 229 (2006)

17. P. Chainais, IEEE Trans. on Pattern Analysis, Machine
intelligence (in press, 2007)

18. B. Mandelbrot, J. Fluid Mech. 62, 305 (1974)
19. A. Arneodo, E. Bacry, J.-F. Muzy, J. Math. Phys. 39, 4142

(1998)
20. F.G. Schmitt, D. Marsan, Eur. Phys. J. B 20, 3 (2001)
21. J.-F. Muzy, E. Bacry, Phys. Rev. E 66, 056121 (2002)
22. F.G. Schmitt, Eur. Phys. J. B 34, 85 (2003)
23. E. Bacry, J.-F. Muzy, Comm. Math. Phys. 236, 449 (2003)
24. P. Chainais, R. Riedi, P. Abry, IEEE Trans. Infor. Theor.

51, 1063 (2005)
25. B. Rajput, J. Rosinski, Probab. Theory Relat. Fields 82,

451 (1989)
26. G. Samorodnitsky, M.S. Taqqu, Stable Non-Gaussian

Random Processes; Stochastic Models with Infinite
Variance (Chapman Hall/CRC, London, 1994), p. 632
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